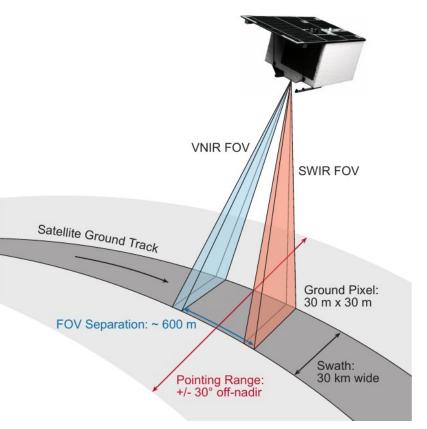
ENMAP RADIOMETRIC INFLIGHT CALIBRATION, POST-LAUNCH PRODUCT VALIDATION, AND INSTRUMENT CHARACTERIZATION ACTIVITIES

<u>A. Hollstein¹</u>, C. Rogass¹, K. Segl¹, L. Guanter¹, M. Bachmann², T. Storch², R. Müller², and H. Krawczyk³

¹Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences ²Earth Observation Center (EOC), German Aerospace Center (DLR), Oberpfaffenhofen ³Earth Observation Center (EOC), German Aerospace Center (DLR), Berlin

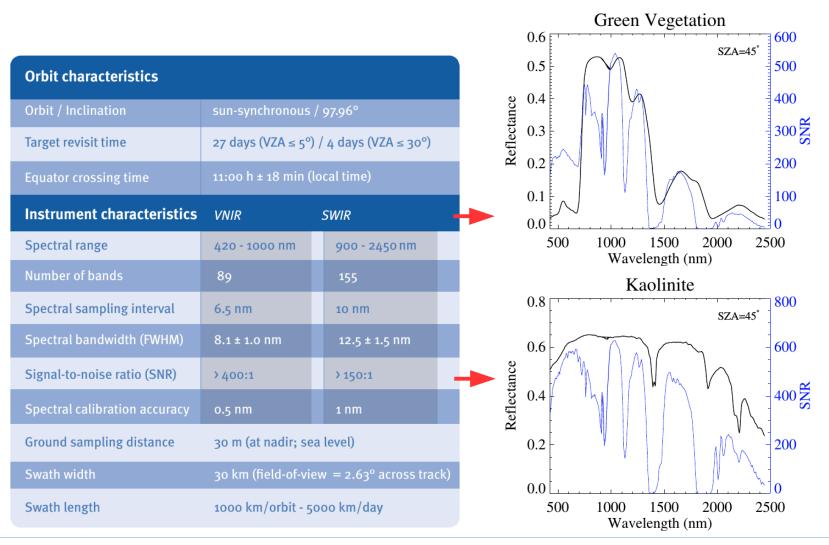
ENMAP RADIOMETRIC INFLIGHT CALIBRATION, POST-LAUNCH PRODUCT VALIDATION, AND INSTRUMENT CHARACTERIZATION ACTIVITIES



The <u>Environmental Mapping and Analysis</u> <u>Program (EnMAP) – Key Facts</u>

Orbit characteristics				
Orbit / Inclination	sun-synchronous / 97.96°			
Target revisit time	27 days (VZA \leq 5°) / 4 days (VZA \leq 30°)			
Equator crossing time	11:00 h ± 18 min (local time)			
Instrument characteristics	VNIR SWIR			
Spectral range	420 - 1000 nm	900 - 2450 nm		
Number of bands	89	155		
Spectral sampling interval	6.5 nm	10 nm		
Spectral bandwidth (FWHM)	8.1 ± 1.0 nm	12.5 ± 1.5 nm		
Signal-to-noise ratio (SNR)	¥400:1	> 150:1		
Spectral calibration accuracy	0.5 nm	1 nm		
Ground sampling distance	30 m (at nadir; sea level)			
Swath width	30 km (field-of-view = 2.63° across track)			
Swath length	1000 km/orbit - 5000 km/day			

to be launched in June 2018



1: http://www.enmap.org/sites/default/files/pdf/pub/EnMAP_komplett_web_eng.pdf

HELMHOLTZ GEMEINSCHAFT

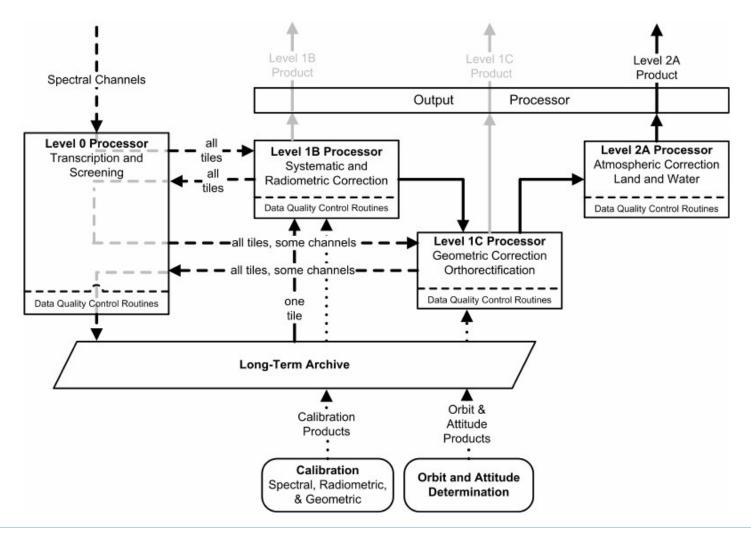
The <u>Environmental Mapping and Analysis</u> <u>Program (EnMAP) – Key Facts</u>

1: www.enmap.org/sites/default/files/pdf/pub/EnMAP_komplett_web_eng.pdf

The <u>Environmental Mapping and Analysis</u> <u>Program (EnMAP) – Key Facts</u>

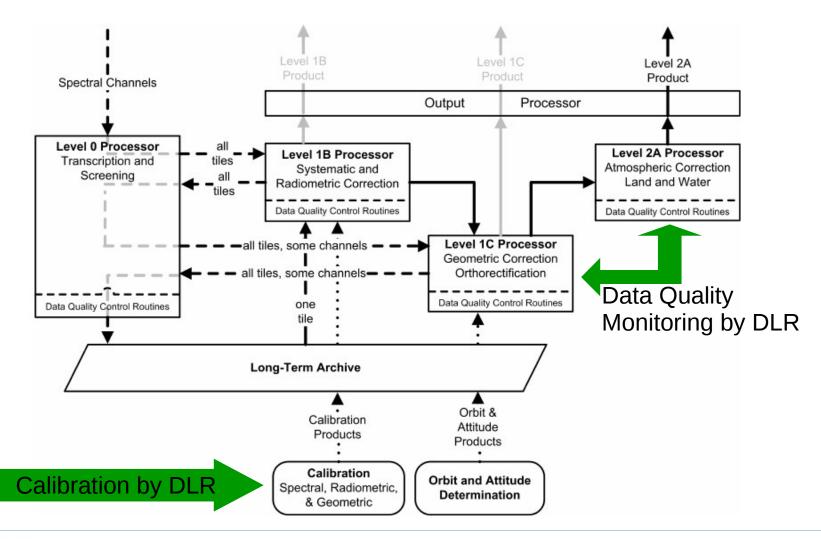
Orbit characteristics

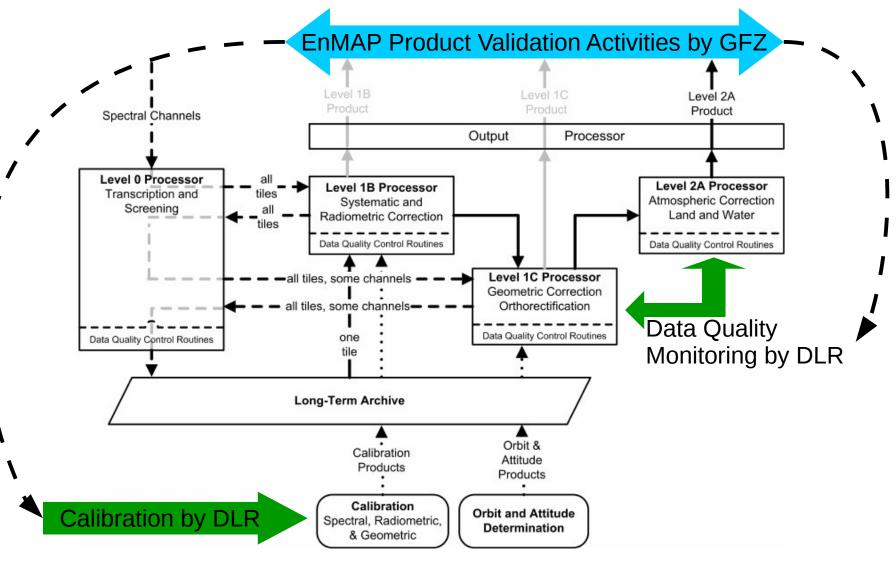
Orbit / Inclination	sun-synchronous / 97.96°			
Target revisit time	27 days (VZA ≤ 5°) / 4 days (VZA ≤ 30°)			
Equator crossing time	11:00 h ± 18 min (local time)			
Instrument characteristics	VNIR SWIR			
Spectral range	420 - 1000 nm	900 - 2450 nm		
Number of bands	89	155		
Spectral sampling interval	6.5 nm	10 nm		
Spectral bandwidth (FWHM)	8.1 ± 1.0 nm	12.5 ± 1.5 nm		
Signal-to-noise ratio (SNR)	> 400:1	> 150:1		
Spectral calibration accuracy	0.5 nm	1 nm		
Ground sampling distance	30 m (at nadir; sea level)			
Swath width	30 km (field-of-view = 2.63° across track)			
Swath length	1000 km/orbit - 5000 km/day			



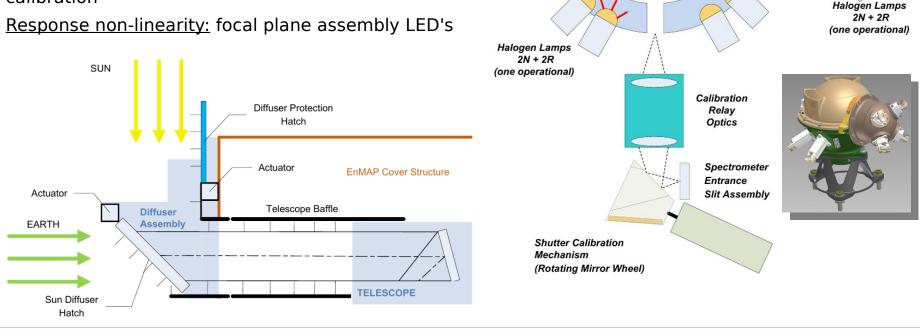
GFZ Helmholtz-Zentrum Potspam

1: http://www.enmap.org/sites/default/files/pdf/pub/EnMAP_komplett_web_eng.pdf


EnMAP Data Processing Scheme by DLR GS


EnMAP Data Processing Scheme by DLR GS

EnMAP Data Processing Scheme by DLR GS


On Board Spectral and Radiometric Calibration

Spectralon

Radiometric Sphere

Entrance Slit OBCA

- Dark values calibration: using recordings while ٠ looking at the closed shutter or into deep space
- Absolute Calibration: Solar calibration using full aperture diffuser assembly, also used for response non-uniformity calibration
- Relative radiometric calibration: monitoring of White LED temporal changes using the large integrating sphere
- <u>Spectral calibration</u>: small integrating sphere with doped Spectralon and dedicated lamps for spectral calibration
- Response non-linearity: focal plane assembly LED's

1N +1R

GFZ

POTSDAM

1:Guanter et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015

Doped

Spectralon

Spectral

Calibration

Sphere

In-flight Calibration Frequencies

Calibration type	Time	Frames	Frequency (<mark>planned</mark>)
Dark (shutter)	23 sec	2*128 (2 gains)	each datatake
Dark (deep space)	30 sec	1*1024 (2 gains)	every 4 months
Relative radiance	17 min 13 sec	1*512 (5 steps)	weekly
Sun calibration	140 sec	2*1024	monthly
Spectral calibration	5 min13 sec	1*1024	every 2 weeks
Linearity measurement	< 5 min	2*128*40 (2 gains)	monthly

Objectives of GFZ Validation Activities and Characterization Plan

Quantitative validation of those <u>EnMAP products</u> to be delivered to end-users; by independent means as considered in the ground segment:

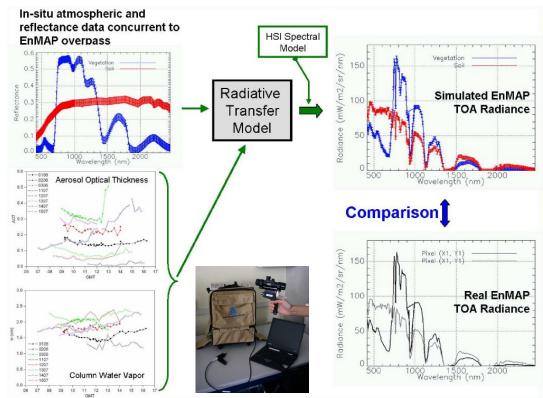
- Level-1B: top of atmosphere radiance
- Level-1C: top of atmosphere radiance with geometric correction
- Level-2A: surface reflectance including geometric correction

Objectives of GFZ Validation and Characterization Plan - Two-Fold Approach

Ground-based:

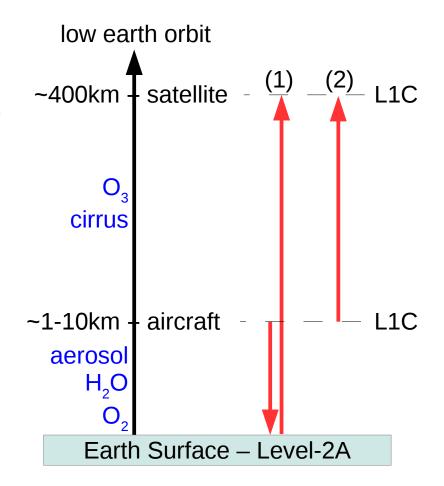
- Comparison of EnMAP user products to *absolute* references for Level-1B/C and Level-2A measurements at <u>to be selected</u> reference sites (e.g. CEOS sites)
- Validation of Atmospheric products from Level-2A processing, e.g. using AERONET sites: aerosol optical thickness, surface pressure, total columnar water vapor
- Using hyper spectral flight campaigns which are a benefit from other science related collaborative efforts ← in discussion, how exactly to do it?

Scene-based:


- Sophisticated models and image processing techniques involved
- Activities considered "scientific" rather than "operational"
- Sensor characteristics: spectral smile, spectral shifts, Keystone, modulation transfer function (MTF)
- Image quality: dead and bad pixels, co-registration, artifact detection such as striping

Approach for Ground-Based Validations – Vicarious Calibration

- Comparison of EnMAP Level-1B/C products with reference radiance spectra generated from in-situ surface reflectance measurements and radiative transfer simulations
- Needed are:
 - In-situ surface reflectance measurements for suitable reference site (homogeneous , ...)
 - Known atmospheric composition (surface pressure, aerosol optical thickness, total columnar water vapor)
 - Accurate radiative transfer simulations
 - Spectral response functions
- Potential benefit from airborne sensors: "closer" to TOA radiance and able to extend validation area to cover EnMAP's swath and to check across-track radiometric response → but need a way to convert airborne data to EnMAP measurement ← in discussion how exactly to do it


1: EnMAP Validation Plan, EN-GFZ-CalVal, Guanter et.al 2: http://aeronet.gsfc.nasa.gov/

Vicarious Validation using Airborne Sensors

- two approaches:
 - airborne Level-1C → Level-2A trough atmospheric correction → radiative transfer modeling + atmospheric parameters for total column → top of atmosphere radiance → Level-1C satellite products
 - airborne Level-1C → radiative transfer modeling + atmospheric parameters for column above aircraft → top of atmosphere radiance → Level-1B/C satellite products
- geometric transfer to satellite instrument
- spectral re-sampling must be performed

Validation Sites* – Criteria

- Level-1B/C → <u>toa radiance</u>
 - Best conditions for instrument testing (high SNR, minimal atmospheric impact,...)
 - Far from ocean and urban & industrial areas
 - Vegetation-free, bright and elevated targets
 - Wide-spread over the globe
- Level-2A → surface reflectance
 - Under normal acquisition conditions
 - Typical EnMAP science sites (agricultural, coastal, geological...)
 - Included in extensive science-oriented campaigns
 - Validation sites across the world at sea level (short-term accessible)
- Level-2A → <u>geometry and sensor</u> <u>characteristics</u>
 - Flat and mountainous regions
 - spectrally heterogeneous with high spectral contrast, geologically stable

Lake Frome, Australia

Ivanpah Playa, USA – PI: NASA GSFC

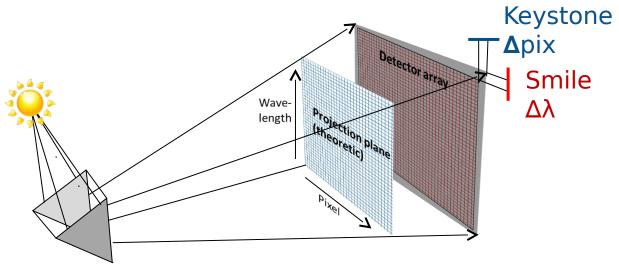
Tinga Tingana, Australia

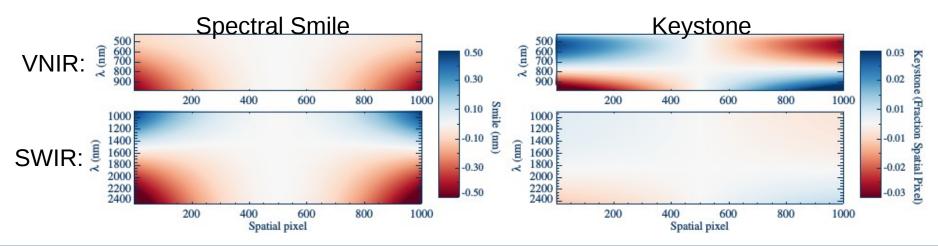
Lspec Frenchman Flat, USA – PI: NASA JPL

PI - DLR

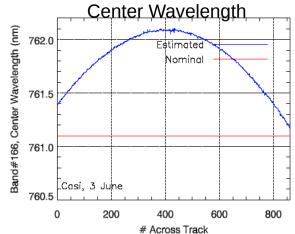
Makhtesh Ramon, Israel PI – U. Ben Gurion/Tel Aviv

> *Sites to be selected before launch.


1: Guanter et al. EnMAP Validation Plan


Scene Based: Uniformity - Keystone and Smile

Keystone and Smile/Frown are spatial deviations from an optimal projection on the detector array and part of instrument characterization → line of sight and PSF for each detector



Scene Based Non Uniformity Assessment – If Needed -

- Smile detection
 - Characterization of spectral shift and smile from Level-1B/C scenes
 - Use of atmospheric absorption features (Oxygen-A 760nm & water vapor 1140nm) – only as a complement of on-orbit measurements
 - Use same atmospheric model as for the atmospheric correction algorithm → maximize smoothness of surface reflectance in the vicinity of atmospheric absorption bands
 - Assumed to be stable after launch → no need to apply correction to each individual image
- Keystone detection
 - Sophisticated detection algorithm
 - Mean keystone detection accuracy: >99% without outliers \rightarrow accuracy < 1µPixel
 - Local distortion reduction factor ~ 1/keystone detection accuracy

In Proceedings of the 8th EARSeL SIG imaging spectroscopy workshop; EARSeL. 2013.

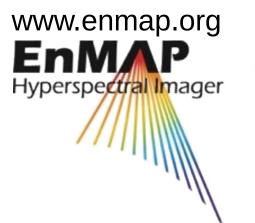
1:Guanter, Luis, Karl Segl, Bernhard Sang, Luis Alonso, Hermann Kaufmann, and Jose Moreno. "Scene-based spectral calibration assessment of high spectral resolution imaging spectrometers." Optics express 17, no. 14 (2009): 11594-11606. 2: Rogass, Christian, Maximilian Brell, Karl Segl, Theres Kuester, and Hermann Kaufmann. "Automatic reduction of keystone, applications to EnMAP."

HELMHOLTZ

Conclusions

- DLR performs calibration of EnMAP products as part of Level-1A/B/C processing
 - Pre-flight characterization (not covered in this talk)
 - On-board dedicated calibration equipment for:
 - Spectral calibration
 - Detector linearity calibration
 - Absolute calibration
 - Uniformity
 - ...
- GFZ performs independent validation activities based on EnMap products
 - Vicarious validation using yet to be defined test sites, atmospheric products e.g. from AERONET, and accurate radiative transfer
 - Scene based assessment of modulation transfer function (MTF)
 - Although spectral smile, spectral shifts and keystone are expected to be small, scene based assessment can be performed using sophisticated algorithms

Dr. André Hollstein Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum GFZ andre.hollstein@gfz-potsdam.de +49 (0)331/288-28969


Thank You

Supported by:

Federal Ministry of Economics and Technology

on the basis of a decision by the German Bundestag

